Home Search Collections Journals About Contact us My IOPscience

Valence states and occupation sites in (Fe,Mn)₃O₄ spinel oxides investigated by soft x-ray absorption spectroscopy and magnetic circular dichroism

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys.: Condens. Matter 20 295203 (http://iopscience.iop.org/0953-8984/20/29/295203)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 29/05/2010 at 13:34

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 20 (2008) 295203 (5pp)

Valence states and occupation sites in (Fe,Mn)₃O₄ spinel oxides investigated by soft x-ray absorption spectroscopy and magnetic circular dichroism

H J Lee¹, G Kim¹, D H Kim¹, J-S Kang^{1,6}, C L Zhang², S-W Cheong², J H Shim³, Soonchil Lee³, Hangil Lee⁴, J-Y Kim⁴, B H Kim⁵ and B I Min⁵

¹ Department of Physics, The Catholic University of Korea (CUK), Bucheon 420-743, Korea

² Rutgers Center for Emergent Materials and Department of Physics, Rutgers University,

³ Department of Physics, KAIST, Daejeon 305-701, Korea

⁴ Pohang Accelerator Laboratory (PAL), POSTECH, Pohang 790-784, Korea

⁵ Department of Physics, POSTECH, Pohang 790-784, Korea

E-mail: kangjs@catholic.ac.kr

Received 31 December 2007, in final form 23 March 2008 Published 26 June 2008 Online at stacks.iop.org/JPhysCM/20/295203

Abstract

The electronic structures of $(Fe,Mn)_3O_4$ spinel oxides have been investigated by employing soft-x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD). We have determined the valence states as well as the occupation sites of Mn and Fe ions in Fe_{0.9}Mn_{2.1}O₄ and MnFe₂O₄. Fe_{0.9}Mn_{2.1}O₄ is found to be close to the inverse spinel (the inversion parameter $y \approx 0.85$), while MnFe₂O₄ is close to the normal spinel ($y \approx 0.2$). In Fe_{0.9}Mn_{2.1}O₄, Fe ions are mainly trivalent and the majority of Fe³⁺ ions occupy the octahedral B sites, while Mn ions are mixed-valent with approximately 45% Mn_A²⁺ at the tetrahedral A sites and 55% Mn_B³⁺ ions at the octahedral B sites. In MnFe₂O₄, Mn ions are mainly trivalent and the majority of Fe³⁺ ions are mainly trivalent and the majority of Fe³⁺ ions are mainly trivalent and the majority of Mn_A²⁺ at the tetrahedral A sites and 55% Mn_B³⁺ ions occupy the tetrahedral A sites, while Fe ions are mainly trivalent and the majority of Fe³⁺ ions are mainly trivalent and the majority of Fe³⁺ ions occupy the octahedral B sites.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The AB₂O₄-type spinel oxides of $(M,M')_3O_4$ exhibit very interesting phenomena, such as the Jahn–Teller effect [1, 2] and phase separations [3]. When both M and M' cations are magnetic ions, as in MnFe₂O₄, a ferrimagnetic ordering is often observed since the antiferromagnetic A–B interaction is dominating [4]. In MM'₂O₄ spinels, a cation occupies either the tetrahedral (T_d) A site or the octahedral (O_h) B site. Hence the MM'₂O₄ spinels are often described as $(M_{1-y}M'_y)_A[M'_{2-y}M_y]_BO_4$, where y is called the inversion parameter. The cases of y = 0 and 1 are called as the normal and inverse spinels, respectively. In $(M,M')_3O_4$ -type spinel oxides with transition-metal elements [5], such as M, M' = Co, Fe, Mn, it is widely believed that A site ions are divalent and that B site ions are trivalent. However, there are some controversies about the valence and spin states of M and M' ions [6–13]. For example, in (Fe,Fe)₃O₄ magnetite, Fe ions at A sites are known to be trivalent, while Fe ions at B sites are in the Fe²⁺–Fe³⁺ mixed-valent states. In contrast, for the valence states of Mn and Fe ions in MnFe₂O₄, no consensus has been reached yet. It was once proposed [6] that the valence states of Mn and Fe ions are mixed-valent such that $(Mn_{1-y}^{2+}Fe_y^{3+})_A[Fe_{2-2y}^{3+}Fe_y^{2+}Mn_y^{3+}]_BO_4$. However, Mössbauer measurements [8] and nuclear magnetic resonance (NMR) measurements [12, 14, 15] were analyzed to produce

Piscataway, NJ 08854, USA

⁶ Author to whom any correspondence should be addressed.

different results: the single-valent states of Mn^{2+} and Fe^{3+} from the former, while the mixed-valent states of $Mn^{2+}-Mn^{3+}$ and $Fe^{2+}-Fe^{3+}$ from the latter. Therefore it is important to determine the valence states and spin structures of M and M' ions in $(M,M')_3O_4$ microscopically.

Soft x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD) are powerful experimental tools for studying the valence states and the local symmetries of T ions [16–18], and the element-specific local magnetic moments of spin and orbital components [19-21], respectively. The magnitudes of the spin moment (m_s) and the orbital moment (m_1) can be estimated quantitatively by applying the sum rules to the measured XMCD spectrum [19, 20]. In this paper, by employing XAS and XMCD, we have investigated the electronic structures of (Fe,Mn)₃O₄: Fe_{0.9}Mn_{2.1}O₄ (FMO) and MnFe₂O₄. MnFe₂O₄ is one of the prototype ferrimagnetic spinel oxides, and there are a few previous studies available [10, 22]. For FMO spinel, however, this is the first work that reports its electronic structure. We have determined the valence states of Mn and Fe ions and the occupation sites of Mn and Fe ions in (Fe, Mn)₃O₄.

2. Experimental details

FMO exhibits a phase separation depending on the annealing conditions in the growth process [3]. FMO single crystal, employed in this study, does not show any phase separation. The details of the sample growth will be described elsewhere [23]. The MnFe₂O₄ sample is the commercially available polycrystalline powder of 99.9% purity synthesized by KOJUNDO Chemical⁷. XRD measurements showed the sharp peaks that are characteristic of the single-phase bulk spinel structure. XAS and XMCD experiments were performed at the 2A undulator beamline of the PAL. The 2A beamline is an elliptically polarized undulator, from which the circularly polarized light was obtained with the degree of circular polarization of >90%. The XMCD spectra were taken for a fixed helicity of light by reversing the applied magnetic field at each hv. In order to minimize the artificial effects caused by the decreasing photon flux with time, the direction of the applied magnetic field was reversed at each data point in the XMCD data acquisition. The FMO single crystal was cleaved in situ, and XAS and XMCD data were collected in the total electron yield (TEY) mode8. XMCD spectra were obtained under the applied magnetic field of ~0.7 T. MnFe₂O₄ was measured at $T \sim 80$ K, while the FMO crystal was measured at room temperature due to charging at low temperature. The total resolution for XAS was less than 100 meV, while that for XMCD was \sim 120 meV at the Mn and Fe 2p absorption edges.

3. Results and discussion

Figure 1(a) shows the measured Fe 2p XAS spectra of $(Fe,Mn)_3O_4$. As a guide of the valence states of Fe ions, reference Fe 2p XAS spectra are shown below:

Figure 1. (a) Comparison of the Fe 2p XAS of $(Fe,Mn)_3O_4$ to those of α -Fe₂O₃, γ -Fe₂O₃ and FeO. (b) Comparison of the Mn 2p XAS spectra of $(Fe,Mn)_3O_4$ to those of MnO (Mn^{2+}) , Mn₂O₃ (Mn^{3+}) and MnO₂ (Mn^{4+}) .

 α -Fe₂O₃ [24, 25] and γ -Fe₂O₃ [24] both as formally trivalent Fe³⁺ oxides (3d⁵) but having different local symmetries, and FeO [25] as a formally divalent Fe^{2+} oxide (3d⁶). The Fe 2p XAS spectra of (Fe,Mn)₃O₄ are very similar to those of both α -Fe₂O₃ and γ -Fe₂O₃, but quite different from that of FeO, indicating that the valence states of Fe ions in (Fe,Mn)₃O₄ are mainly trivalent (3+). Note that the intensity of the peak 'A' with respect to that of the peak 'B' decreases from α -Fe₂O₃ to $(Fe,Mn)_3O_4$ and γ -Fe₂O₃. All Fe³⁺ ions in α -Fe₂O₃ have the O_h sites only, while γ -Fe₂O₃ is often represented by $\text{Fe}_{A}^{3+}[\text{Fe}_{5/3}^{3+}V_{1/3}]_{B}O_{4}$ spinel with vacancies (V) at B sites. Hence Fe^{3+} ions in γ -Fe₂O₃ have both the T_d and O_h sites. Then the lower intensity of A/B in (Fe,Mn)₃O₄, than in α -Fe₂O₃, suggests the existence of Fe³⁺ ions at the T_d sites. In other words, Fe ions in $(Fe, Mn)_3O_4$ occupy both $B(O_h)$ and $A(T_d)$ sites. Further, the lower intensity of A/B in FMO than in MnFe₂O₄ reflects that more Fe ions occupy A(T_d) sites in FMO. This conclusion will be confirmed later in figure 4.

Similarly, figure 1(b) compares the measured Mn 2p XAS spectra of $(Fe,Mn)_3O_4$ to those of reference Mn systems of MnO (Mn^{2+}) [27], Mn₂O₃ (Mn^{3+}) [28] and MnO₂ (Mn^{4+}) [27]. The Mn 2p XAS spectrum of MnFe₂O₄ is qualitatively similar to that of MnO, but quite different from those of Mn₂O₃ and MnO₂, suggesting that Mn ions in MnFe₂O₄ are nearly divalent. In contrast, the features in FMO resemble those of both MnO and Mn₂O₃, suggesting that Mn ions are in the Mn²⁺–Mn³⁺ mixed-valent states.

Figure 2 compares the measured Fe 2p XAS spectra of $(Fe,Mn)_3O_4$ to the calculated Fe 2p XAS spectra, obtained from the ligand field multiplet (LFM) model calculations [17] by including the spin–orbit (LS) interaction between 3d electrons. The three calculated XAS spectra (blue lines) represent those for Fe³⁺_B (3d⁵; O_h) with 10Dq = 1.5 eV, Fe³⁺_A (3d⁵; T_d) with 10Dq = 1.2 eV and Fe²⁺_B (3d⁶; O_h) with 10Dq = 1.5 eV, respectively. It appears that the observed features in the measured Fe 2p XAS spectra in (Fe,Mn)₃O₄ are described better by the calculated Fe³⁺ states than by the

 $^{^7}$ SEM (scanning electron microscope) measurements showed that the average grain size of the MnFe₂O₄ sample is larger than a few μ m.

⁸ The TEY mode has a proving depth of 50–100 Å.

Figure 2. Comparison of the Fe 2p XAS of $(Fe,Mn)_3O_4$ to the calculated Fe 2p XAS for O_h Fe³⁺, T_d Fe³⁺ and O_h Fe²⁺ ions.

Figure 3. Comparison of the measured Mn 2p XAS spectra (red) of $(Fe,Mn)_3O_4$ to the calculated Mn 2p XAS (blue lines at the bottom) for $T_d Mn_A^{2+} (3d^5)$, $O_h Mn_B^{2+} (3d^5)$ and $O_h Mn_B^{3+} (3d^4)$ ions, respectively. Two fitting results for FMO are shown: 'Fit-1' (black line) represents the weighted sum of the experimental XAS spectra of (45% MnO and 55% Mn_2O_3). 'Fit-2' (black dotted line) represents the weighted sum of (45% Mn_A^{2+} and 55% Mn_B^{3+}) calculations. The two fitting results for MnFe₂O₄, labeled as 'Fit-1' and 'Fit-2', represent the weighted sum of (80% Mn_A^{2+} and 20% Mn_B^{3+}) calculations, respectively.

calculated Fe²⁺ states. In the quantitative aspect, however, the calculated XAS spectra are somewhat different from the measured XAS spectra of (Fe,Mn)₃O₄ (figure 2), as compared to the similarity among the measured XAS spectra of α -Fe₂O₃, γ -Fe₂O₃ and (Fe,Mn)₃O₄ (figure 1(a)). Hence we cannot tell clearly the occupation sites of Fe³⁺ ions based on the LFM

Figure 4. (a) Comparison of the Fe 2p XMCD of $(Fe,Mn)_3O_4$ to those of GaFeO₃ [24], γ -Fe₂O₃ [24] and their weighted sums. (b) Comparison of the measured Mn 2p XMCD of $(Fe,Mn)_3O_4$ to the calculated Mn 2p XMCD for Mn²⁺(3d⁵) and Mn³⁺(3d⁴) ions [29], and their weighted sums.

calculations. The determination of the occupation sites will be made in the analysis of XMCD spectra of $(Fe,Mn)_3O_4$ in figure 4.

Figure 3 compares the measured Mn 2p XAS spectra (red) of (Fe,Mn)₃O₄ to the LFM calculations for Mn 2p XAS. The three calculated XAS spectra at the bottom (blue lines) represent those for Mn_A^{2+} (3d⁵; T_d), Mn_B^{2+} (3d⁵; O_h) and Mn_B^{3+} $(3d^4; O_h)$, with the crystal field energy 10Dq = 0.6 eV, 10Dq = 1.2 eV and 10Dq = 1.2 eV, respectively. Two fitting results for FMO are shown: 'Fit-1' (black line) represents the weighted sum of the experimental XAS spectra of MnO (see figure 1(b) and Mn_2O_3 (see figure 1(b)) with the ratio of [45% MnO and 55% Mn₂O₃]. 'Fit-2' (black dotted line) represents the weighted sum of [45% Mn_A^{2+} (T_d) and 55% Mn_B^{3+} (O_h)] calculations. The former fitting using the experimental data of MnO and Mn₂O₃ yields better agreement with the measured XAS of FMO than the latter fitting using the calculations. The discrepancy for feature A ($h\nu \sim 639 \text{ eV}$) seems to be due to the fact that Mn ions in MnO have the O_h symmetry only. This argument is supported by the feature ' α ' in the calculated XAS for Mn_B^{2+} (3d⁵; O_h), which is absent in the calculated XAS for Mn_A^{2+} (3d⁵; T_d). According to these fittings for FMO, we can conclude that FMO has the nearly inverse spinel configuration, corresponding to $\approx (Mn_{0.9}^{2+}Fe_{0.1}^{3+})_A [Fe_{0.8}^{3+}Mn_{1.2}^{3+}]_B O_4$ $(y \approx 0.85).$

On the other hand, for MnFe₂O₄, the inversion parameter $y \approx 0.2$ gives the best fitting for Mn 2p XAS. As to the fitting results of MnFe₂O₄, 'Fit-1' and 'Fit-2' for MnFe₂O₄ represent the weighted sums of (80% Mn_A²⁺(T_d) and 20% Mn_B²⁺(O_h)) to describe the single-valent states of Mn ions, and (80% Mn_A²⁺(T_d) and 20% Mn_B³⁺(O_h)) to describe the mixed-valent states of Mn ions, respectively. The latter fit 'Fit-2' was made in order to check the consistency between our data and the mixed-valent picture for MnFe₂O₄ [6, 12]. Both fits yield good agreement with experiment. Hence, at the moment, we cannot finalize whether the valence

states of Mn and Fe ions in $MnFe_2O_4$ are single-valent such as $(Mn_{0.8}^{2+}Fe_{0.2}^{3+})_A[Fe_{1.8}^{3+}Mn_{0.2}^{2+}]_BO_4$ or mixed-valent such as $(Mn_{0.8}^{2+}Fe_{0.2}^{3+})_A[Fe_{1.6}^{3+}Fe_{0.2}^{2+}Mn_{0.2}^{3+}]_BO_4$.

Figure 4(a) compares the Fe 2p XMCD spectra of (Fe,Mn)₃O₄ (red dots) to those of GaFeO₃ [24] and γ -Fe₂O₃ [24], which were obtained at the same beamline of the PAL and under the similar experimental conditions as our $(Fe,Mn)_3O_4$ data. We have shifted GaFeO₃ by -0.42 eV and γ -Fe₂O₃ by -0.83 eV to align their O_h peaks to those of our XMCD spectra of (Fe, Mn)₃O₄. The weighted sum (black line) of 60% GaFeO₃ and 40% γ -Fe₂O₃ is superposed upon the XMCD spectrum of FMO. Similarly, the weighted sum (black line) of 70% GaFeO₃ and 30% γ -Fe₂O₃ is superposed upon the XMCD spectrum of MnFe₂O₄. Note that the XMCD spectrum of GaFeO₃ has the contribution only from O_h Fe³⁺ ions [24], whereas that of $\gamma\text{-}Fe_2O_3$ has a mixture of Fe_A^{3+} (T_d) and Fe_B^{3+} (O_h) ions [26] (see the labels in figure 4). In γ -Fe₂O₃, the sign of the dichroic contribution of T_d ions to XMCD is opposite to that of O_h ions because the main magnetic coupling between O_h and T_d sites is antiferromagnetic.

Note that the Fe 2p XMCD spectra of $(Fe,Mn)_3O_4$ are described very well by a linear combination of GaFeO₃ and γ -Fe₂O₃ (in particular for the feature around $h\nu \sim 708 \text{ eV}$), which indicates the existence of both T_d Fe³⁺_A and O_h Fe³⁺_B ions in (Fe,Mn)₃O₄. This conclusion is consistent with that of figure 1(a). Considering 100% O_h Fe³⁺ ions for GaFeO₃ and Fe³⁺_A/Fe³⁺_B = T_d/O_h = 3/5 for γ -Fe₂O₃, these fittings yield the estimated T_d/O_h ratio of T_d/O_h = 0.11/0.89 \approx 0.1/0.9 for MnFe₂O₄, and $T_d/O_h \approx 0.15/0.85$ for FMO, respectively. Hence, among 0.9 Fe ions in Fe_{0.9}Mn_{2.1}O₄, about 0.13 (\approx 0.1) Fe ions occupy the A(T_d) site and about 0.77 (\approx 0.8) Fe ions occupy the B(O_h) site. That is, one can express Fe_{0.9} roughly as \sim (Fe_{0.1})_A[Fe_{0.8}]_B.

Figure 4(b) compares the Mn 2p XMCD spectra of $(Fe,Mn)_3O_4$ to the calculated Mn 2p XMCD spectra [29] for $Mn^{2+}(3d^5)$ and $Mn^{3+}(3d^4)$ states under the spherical symmetry, and the weighted sum of (45% Mn^{2+} and 55% Mn^{3+}) and that of (80% Mn^{2+} and 20% Mn^{3+}). These calculations describe the multiplet features of XMCD of $(Fe,Mn)_3O_4$ qualitatively well. In particular, the negative feature (marked with an arrow) around $h\nu \sim 641$ eV is larger in FMO than in MnFe₂O₄, providing clear evidence for the existence of Mn^{3+} states in FMO. On the other hand, both 100% Mn^{2+} calculations and the sum of (80% Mn^{2+} and 20% Mn^{3+}) calculations seem to agree with the measured Mn 2p XMCD of MnFe₂O₄ within the fitting uncertainty.

This study shows that, in Fe_{0.9}Mn_{2.1}O₄, Fe ions are mainly trivalent (3+) and that the majority of Fe ions occupy the B(O_h) sites, with about 15% of the inverted Fe_A³⁺ (T_d) ions. Mn ions are mixed-valent with approximately 45% Mn_A²⁺ and 55% Mn_B³⁺ ions. Hence formal Fe_{0.9}Mn_{2.1}O₄ can be written roughly as \approx (Mn_{0.9}²⁺Fe_{0.1}³⁺)_A[Fe_{0.8}³⁺Mn_{1.2}]_BO₄, reflecting the nearly inverse spinel configuration of $y \approx 0.85$. As to MnFe₂O₄, Mn and Fe ions are nearly divalent (Mn²⁺) and trivalent (Fe³⁺), respectively, and both Mn and Fe ions have mixed configurations of T_d and O_h sites with the inversion parameter $y \approx 0.2$. Hence MnFe₂O₄ belongs to the nearly normal spinel. As for the valence states of MnFe₂O₄, our XAS and XMCD data do not show clear evidence for the mixed-valent states, and so we cannot finalize the exact valence states of $MnFe_2O_4$ at the moment. So this issue remains to be resolved.

4. Conclusions

The valence states and the occupation sites of FMO and MnFe₂O₄ have been investigated by employing XAS and XMCD. In FMO, Fe ions are mainly trivalent (3+) and the majority of Fe³⁺ ions occupy the B(O_h) sites, while Mn ions are mixed-valent with approximately 45% Mn_A²⁺ at the A(T_d) sites and 55% Mn_B³⁺ ions at the B(O_h) sites. Therefore the formal Fe_{0.9}Mn_{2.1}O₄ is identified as \approx (Mn_{0.9}²⁺Fe_{0.1}³⁺)_A[Fe_{0.8}Mn_{1.2}³⁺]_BO₄, corresponding to the nearly inverse spinel configuration of $y \approx 0.85$. In MnFe₂O₄, Mn and Fe ions are mainly divalent (Mn²⁺) and trivalent (Fe³⁺), respectively, corresponding to the nearly normal spinel configuration with the inversion parameter $y \approx 0.2$. But our XAS/XMCD data can be described either by the single-valent states or by the mixed-valent states.

Acknowledgments

This work was supported by the KRF (KRF-2006-311-C00277), by the KOSEF (R01-2006-000-10369-0), by the KOSEF through the eSSC at POSTECH, and by the Department Specialization Fund of the CUK (2008). Work at Rutgers was supported by NSF-DMR-0405682. PAL is supported by the MOST and POSCO in Korea.

References

- [1] Choi H C, Shim J H and Min B I 2006 Phys. Rev. B 74 172103
- [2] Noh H-J, Yeo S, Kang J-S, Zhang C L, Cheong S-W, Oh S-J and Johnson P D 2006 Appl. Phys. Lett. 88 081911
- [3] Zhang C L, Yeo S, Horibe Y, Choi Y J, Guha S, Croft M and Cheong S-W 2007 Appl. Phys. Lett. 90 133123
- [4] Goodenough J B 1976 Magnetism and the Chemical Bond (New York: Krieger)
- [5] Baron V, Gutzmer J, Rundlöf H and Tellgren R 1998 Am. Mineral. 83 786
- [6] Harrison F W, Osmond W P and Teale R W 1957 *Phys. Rev.* 106 865
- [7] Boucher B, Buhl R and Perrin M 1969 *J. Appl. Phys.* 40 1126
 [8] Sawatzky G A, van der Woode F and Morrish A H 1969
- *Phys. Rev.* **187** 747 [9] Šimša Z and Brabers V A M 1975 *IEEE. Trans. Magn.* **11** 1303
- [10] Stichauer L *et al* 2001 *J. Appl. Phys.* **90** 2511
- [11] de Medeiros S N, Luciano A, Cotica L F, Santos I A, Paesano A Jr and da Cunha J B M 2004 J. Magn. Magn. Mater. 281 227
- [12] Shim J H, Lee S and Min B I 2007 Phys. Rev. B 75 134406
- [13] Noh H-J et al 2007 Europhys. Lett. 78 27004
- [14] Kubo T, Hirai A and Abe H 1969 J. Phys. Soc. Japan 26 1094
- [15] Shirakashi T and Kubo T 1979 Am. Mineral. 64 599
- [16] de Groot F M F, Fuggle J C, Thole B T and Sawatzky G A 1990 Phys. Rev. B 42 5459
- [17] van der Laan G and Kirkman I W 1992 J. Phys.: Condens. Matter 4 4189
- [18] Wi S C et al 2004 Appl. Phys. Lett. 84 4233
- [19] Thole B T, Carra P, Sette F and van der Laan G 1992 *Phys. Rev. Lett.* 68 1943

- [20] Chen C T, Idzerda Y U, Lin H-J, Smith N V, Meigs G, Chaban E, Ho G H, Pellegrin E and Sette F 1995 *Phys. Rev. Lett.* **75** 152
- [21] Han S W et al 2006 J. Phys.: Condens. Matter 18 7413
- [22] Singh D J, Gupta M and Gupta R 2002 Phys. Rev. B 65 064432
- [23] Zhang C L et al 2008 unpublished
- [24] Kim J-Y, Koo T Y and Park J-H 2006 Phys. Rev. Lett.
- 96 047205
 [25] Regan T J, Ohldag H, Stamm C, Nolting F, Lüning J, Stöhr J and White R L 2001 *Phys. Rev.* B 64 214422
- [26] Brice-Profeta S, Arrio M-A, Tronc E, Menguy N, Letard I, Cartier dit Moulin C, Nogues M, Chaneac C, Jolivet J-P and Sainctavit Ph 2005 J. Magn. Magn. Mater. 288 354
- [27] Mitra C, Hu Z, Raychaudhuri P, Wirth S, Csiszar S I, Hsieh H H, Lin H-J, Chen C T and Tjeng L H 2003 *Phys. Rev.* B 67 92404
- [28] Ghigna P, Campana A, Lascialfari A, Caneschi A, Gatteschi D, Tagliaferri A and Borgatti F 2001 *Phys. Rev.* B 64 132413
- [29] van der Laan G and Thole B T 1991 Phys. Rev. B 43 13401